
Smallholder Knowledge of Local Climate Conditions

Predicts Positive On-Farm Outcomes

JONATHAN SALERNO,a KAREN BAILEY,b JEREMY DIEM,c BRONWEN KONECKY,d RYAN BRIDGES,e

SHAMILAH NAMUSISI,f ROBERT BITARIHO,g MICHAEL PALACE,h AND JOEL HARTTERb

a Department of HumanDimensions of Natural Resources, Graduate Degree Program in Ecology, Colorado State University,
Fort Collins, Colorado

b Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado
c Department of Geosciences, Georgia State University, Atlanta, Georgia

d Department of Earth and Planetary Sciences, Washington University in Saint Louis, Saint Louis, Missouri
e Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado

f School of Public Health, Makerere University, Kampala, Uganda
g Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, Uganda

h Earth System Research Center, Institute for the Study of Earth, Oceans and Space, Department of Earth Sciences,
University of NewHampshire, Durham, NewHampshire

(Manuscript received 7 September 2021, in final form 9 March 2022)

ABSTRACT: People’s observations of climate change and its impacts, mediated by cultures and capacities, shape adap-
tive responses. Adaptation is critical in regions of rainfed smallholder agriculture where changing rainfall patterns have dis-
proportionate impacts on livelihoods, yet scientific climate data to inform responses are often sparse. Despite calls for
better integration of local knowledge into adaptation frameworks, there is a lack of empirical evidence linking both small-
holder climate observations and scientific data to on-farm outcomes. We combine smallholder observations of past sea-
sonal rainfall timing with satellite-based rainfall estimates in Uganda to explore whether farmers’ ability to track climate
patterns is associated with higher crop yields. We show that high-fidelity tracking, or alignment of farmer recall with recent
rainfall patterns, predicts higher yields in the present year, suggesting that farmers may translate their cumulative record of
environmental knowledge into productive on-farm decisions, such as crop selection and timing of planting. However, track-
ing of less-recent rainfall (i.e., 1–2 decades in the past) does not predict higher yields in the present, while climate data
indicate significant trends over this period toward warmer and wetter seasons. Our findings demonstrate the value of small-
holder knowledge systems in filling information gaps in climate science while suggesting ways to improve adaptive capacity
to climate change.

KEYWORDS: Africa; Cloud tracking/cloud motion winds; Precipitation; Climate variability; Satellite observations;
Bayesian methods; Seasonal forecasting; Interannual variability; Intraseasonal variability; Adaptation; Agriculture;
Climate services; Decision making; Indigenous knowledge

1. Introduction

Climate change impacts are disproportionately experienced
in regions of the developing world where rainfed farming sys-
tems are predominant (Adger et al. 2003; Kotir 2011). And
yet, many such areas of vulnerability are those least under-
stood by climate science, where station-based observations are
sparse and long-term records incomplete (Boko et al. 2007;
Alexander et al. 2011; Nakashima et al. 2012; Kizza et al. 2009).
While recent calls acknowledge the need for better engage-
ment of existing climate data sources with local knowledge
systems}to both fill gaps in climate science and support on-
farm adaptive capacity}such engagement remains poorly devel-
oped (Roncoli 2006; Alexander et al. 2011; Savo et al. 2016).

In this paper, we combine scientific climate data with local
knowledge systems from a climatically complex transition
zone of equatorial Africa. We explore an outstanding ques-
tion about smallholder climate observations (Kotir 2011;
Waldman et al. 2019a): are farmers who observe rainfall pat-
terns with higher fidelity over time associated with higher
yields in the present, suggesting the capacity to adapt farming
practices in response to variable and changing climate?

Variable and changing rainfall patterns pose significant chal-
lenges in smallholder farming systems (Kotir 2011; Nakashima
et al. 2012). Smallholders employ flexible livelihood strategies
to adapt to change and minimize risk (Adger et al. 2003), and
effective adaptation depends on information drawn from both
social and biophysical environments (Roncoli 2006; Crane et al.
2011). For instance, farmers may anticipate changes in timing
and duration of seasonal rainfall by observing recent rainfall or
other environmental signs (e.g., plant flowering, migratory bird
behavior), which inform real-time decisions to alter crop type
or timing of on-farm activities (Orlove et al. 2010; Salerno et al.
2019; Kotir 2011). Individual observations are also updated
with information accessed through social networks, such as
from trusted kin, agricultural extension services, or scientific
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forecasts, which may facilitate more effective decision-making,
particularly in the context of noisy environmental signals
(Crane et al. 2011). However, smallholder knowledge systems
are increasingly strained under variable and changing climate,
as rainfall patterns begin to depart from the deep temporal
record of culturally transmitted past observations (Alexander
et al. 2011; Nakashima et al. 2012). If the ability to make real-
time adaptive decisions erodes, this may compound climate
impacts on yields and system sustainability (Adger et al. 2003;
Boko et al. 2007; Simelton et al. 2013).

Understanding the timing and duration of seasonal rainfall
in data-deficient regions remains particularly challenging for
climate science. In equatorial Africa, much of the region has
two rainy seasons associated with the twice-annual passage of
the tropical rain belt, with interannual variability arising from
teleconnections among remote atmospheric and oceanic
phenomena (Nicholson 2017; Diem et al. 2021). The late
twentieth–early twenty-first century trends in each season’s
rainfall differ markedly in various rainfall data products
(Maidment et al. 2015). Future trends, in even coarse seasonal
rainfall totals, are also unclear (Rowell and Chadwick 2018).

We define the concept of climate tracking as the alignment or
skill of smallholder observations over time relative to climatic
processes, namely rainfall. Better climate tracking should sup-
port improved on-farm decisions and livelihood security (Crane
et al. 2011). While intuitive, this hypothesis remains untested
empirically in regions of limited scientific climate information
and where barriers exist for farmers to utilize climate track-
ing knowledge through adaptive responses on their farm, such
as through technological changes (Adger et al. 2003; Boko et al.
2007; Nakashima et al. 2012; Waldman et al. 2019a).

Here, we test the hypothesis that skillful farmer climate track-
ing is associated with higher farm productivity in multiple sites
across western Uganda (Fig. 1a). Our approach assumes that
individual-level climate tracking skill can enable improved farm
management, mediated through farmers’ capacities and institu-
tions (Crane et al. 2011). To test our hypothesis, we estimate
Bayesian multilevel statistical models fit to multisite farm-level
data on primary crop yields (e.g., maize, beans, potatoes), cli-
mate tracking, and controls (n = 614). Tracking measures are
based on recalled farmer perceptions of dekadal, or 10-day,
rainfall occurrence over a general year (i.e., presence–absence
in beginning/middle/end of months), during recent (i.e., the
past few years) and past (i.e., 10–20 years) time periods. Cor-
relation coefficients are then calculated associating dekadal
farmer observations with mean dekadal rainfall estimates
from validated satellite-based data products, 2014–18 and
1998–2008 (Funk et al. 2015; Maidment et al. 2017; Diem et al.
2019a).

2. Methods

We evaluate the hypothesis that farmer-level skill of rain-
fall observations over time (i.e., tracking) is associated with
higher agricultural yields. Our approach to measure tracking
assumes the importance of seasonal rainfall timing in our agri-
cultural system and that past experiences inform current on-
farm behavior (Crane et al. 2011; Orlove et al. 2010; Salerno

et al. 2019). We define tracking as the correlation between
recalled farm-level observations of seasonal rainfall timing
(in recent 1–4 years and 10–20 years in the past) measured
through both household surveys and dekadal rainfall esti-
mates (2014–18 and 1998–2008) from multiple validated sat-
ellite-based rainfall products (Funk et al. 2015; Maidment
et al. 2017; Diem et al. 2019a). The sections below describe
the study region, household survey data and processing, cli-
mate data and processing, and statistical analyses.

Research protocols were approved by the University of
Colorado Institutional Review Board (14–0145) and the
Uganda National Council for Science and Technology and
Research Ethics Committee (NS37ES). Research design, con-
duct, and data collection proceeded following recognized ethi-
cal guidelines (American Anthropological Association 2012;
Brittain et al. 2020). Prior to conducting research, local per-
missions were granted at the level of the LC1 (i.e., village).
All research participants gave prior informed consent.

a. Study region

Western Uganda is located in a climatological transition
zone between central and eastern equatorial Africa. Mean
annual precipitation ranges from ∼1100–1400 mm, but with
appreciable interannual variation (Salerno et al. 2017).
Annual rainfall in western Uganda is generally higher than in
Kenya to the east (Nicholson 2017) but lower than in the
Congo Basin to the west (Todd and Washington 2004). Sea-
sonal rainfall patterns vary markedly, with the far northern
portion of the region experiencing a near-annual rainfall
regime (i.e., rains occur as one long season from late March to
mid-November), while the rest of the region experiences a
biannual rainfall regime with the one rainy season typically
occurring from March to mid-May and another occurring
from August to early December (Diem et al. 2019b). In con-
trast to eastern equatorial Africa, the rains during boreal
spring are colloquially known as the short rains, and the rains
during boreal autumn are known as the long rains (Hartter
et al. 2012; Diem et al. 2017).

This study reports data from a larger research effort aimed
at understanding atmospheric controls of rainfall in western
Uganda (Diem et al. 2019a,b). Therefore, site selection for
household data collection was informed by the location of
rainfall zones spanning the latitudinal range of the study
region, with study communities purposefully selected at the
northern- and southernmost extent. We refer to these sites as
Masindi and Bwindi, respectively.

Rainfed smallholder farming systems characterize the study
region, with farmers employing relatively few mechanical and
chemical inputs in diversified cropping strategies (Hisali et al.
2011; Okonya et al. 2013; Salerno et al. 2017). In the northern
site, Masindi, farmers grow predominantly maize during a sin-
gle growing season, though multiple harvests are possible
depending on rainfall. In the southern site, Bwindi, farmers
grow a variety of crops, including potatoes, beans, sweet pota-
toes, maize, millet, tomatoes, and cassava over multiple har-
vest cycles annually.
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Because rainfall timing is highly variable, crop selection
and planting time represent critical farm management deci-
sions. In such systems with variable rainfall, and where scien-
tific forecasts are unreliable or inaccessible, local knowledge
of spatial and temporal patterning of rainfall becomes essen-
tial (Haile 2005; Roncoli 2006; Simelton et al. 2013; Kassie
et al. 2013; Fassnacht et al. 2018). Indeed, farmers elsewhere
in Uganda integrate historical knowledge, environmental
signs such as changing weather or bird migrations, local varia-
tion, and information shared through social networks in order
to make on-farm decisions (Orlove et al. 2010; Roncoli et al.
2011). Uganda’s Vision 2040 and national strategy for climate
adaptation emphasize improving accuracy and accessibility of
forecasts (Republic of Uganda 2007, 2020; Echeverrı́a et al.
2016). However, rainfall forecasts are coarse in spatial and
temporal resolution, usually downscaled to one or multiple
regions and disseminated semiannually, and farmers can find
them of varying utility (Patt et al. 2007; Okonya et al. 2013;
Mwangu 2020; Osbahr et al. 2011).

b. Household data

Household survey and focus group data were collected in
the Bwindi and Masindi sites after the first harvest in 2018
and 2019. Field work activities were conducted using the lan-
guages of Runyoro in Masindi and Rukiga in Bwindi. We

conducted focus group interviews to obtain qualitative data
from farmer participants on rainfall related to livelihoods
and to refine the household survey for local relevance and
validity.

Household surveys were conducted by trained enumerators
in 30–50 randomly selected households in each community.
Randomization was implemented using village and subvillage
rosters with support from village (LC1) leaders. At each
household, surveys were requested with the head of house-
hold or spouse responsible for farming and farm management
decisions; it was typical for multiple adult family members to
participate jointly in surveys. We acknowledge the possibility
that family members may hold different views of rainfall
based on different roles and experiences, for instance, along
gender lines. We nevertheless hold that the randomized sam-
pling frame, presence of male and female primary respond-
ents in the sample, and collaborative household nature of
surveys limit such biases. Surveys recorded data on rainfall
observations and farm livelihoods.

For main analyses in this study, we use a suite of house-
hold-farm variables drawn from the survey. The purpose is to
build a controlled model predicting crop yields and assess
whether skillful climate tracking serves as an informative pre-
dictor along with a robust set of controls. Crop yield is our
outcome variable, which we standardize across crop types
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FIG. 1. Intra-annual seasonal rainfall patterns in western Uganda. (a) Study region in the climatic transition zone of eastern and central
equatorial Africa, land cover (Friedl et al. 2010), and locations of study communities in the northern and southern sites. (b) Percentage of
farmer respondents (n = 614) observing rainfall presence (1/0) in 36 dekadal periods (January–December), reported through surveys, and
corresponding to recent (last few years) and past periods (10–20 years). (c) Mean total rainfall (mm) averaged across Masindi and Bwindi
sites in 36 dekadal periods (January–December); data represent mean values from two validated satellite-based rainfall products in recent
(2014–18) and past periods (1998–2008) (Funk et al. 2015; Maidment et al. 2017). See Fig. S1 in the online supplemental material for
higher-resolution longitudinal comparisons of rainfall and temperature.
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because households typically plant multiple crops over multi-
ple seasons, and because fields are often intercropped. In rela-
tion to climate tracking, we assume farmers continuously
make weather and rainfall observations, update their expecta-
tions about timing and amount, and apply this information to
specific crops and plots (Crane et al. 2011; Orlove et al. 2010),
although we acknowledge that perceptions of rainfall may be
sensitive to crop type. Yield is estimated from household sur-
vey responses reporting crops grown (predominantly pota-
toes, beans, sweet potatoes, maize, cassava, millet), area of
land on which crops were planted, and total amount har-
vested. We standardized yield calculations as the value of har-
vested crops in Ugandan shillings (UGX) per hectare. Crop
value was determined by the crop price paid in the nearest
trading center during the survey period (at previous harvest
time) based on key informant and focus group interviews.
Units of the amount harvested for each crop were converted
to kilograms, area planted was converted to hectares, and
market price was applied to produce yield estimates in UGX
per hectare; 585 farmers reported sufficient data with which
to calculate primary crop yields.

Perceptions of recent and past rainfall timing in a general
year were recorded using a combination of verbal and visual
questioning. To record recent rainfall observations, respond-
ents were asked, “In the last few years, when is it normal for
rains to fall?” Enumerators contextualized the question rela-
tive to the seasonality of rainfall (i.e., terminology was used
for the first/short rains and the second/long rains specific to
the sites). During focus group discussions and pretesting,
farmers indicated that referring to the beginning, middle, and
end of each month was meaningful to them for recall of previ-
ous rainy seasons. Similar studies investigating recall of rain-
fall timing in previous years have used similar time periods
in questioning (Waldman et al. 2019b). Therefore, surveys
prompted respondents to point to monthly boxes (arranged in
a line representing a calendar year) with the aid of the enu-
merator to indicate when they recalled appreciable rainfall;
respondents specified divisions within each monthly box cor-
responding to the beginning, middle, and end of each month
(i.e., 10-day dekad). Respondents were encouraged to inter-
pret what they considered appreciable or meaningful rainfall
to be in the context of their farms and rains that inform deci-
sions or motivate management action. Responses produced
36 presence/absence (yes/no) responses corresponding to dek-
adal periods. To record past rainfall observations, respondents
were asked, “In the past, perhaps ten to twenty years ago
or when you were a child, when was it normal for rains to
fall?” This question yielded a second set of 36 dekadal rainfall
presence/absence responses.

Studies from smallholder systems have shown that recall
bias can exist, for instance, where farmers perceive past rainy
season onset becoming later while station- or satellite-based
estimates show no clear trend (Simelton et al. 2013; Osbahr
et al. 2011; De Longueville et al. 2020). Such discrepancy can
be due simply to poor recall or memory, or due to cognitive
biases related to how farmers process past information and
patterned by individual livelihood or social factors (e.g., age,
education, local narratives) (Waldman et al. 2019b; Mulenga

et al. 2017). However, our study does not assume that farmer
rainfall responses are free of recall bias, only that the varia-
tion in measured perceptions of rainfall timing reflects the rel-
ative skill of respondents in recalling this information. In
addition, in part because farmers use heuristics to recall previ-
ous rainfall information, responses may be less attentive to
interannual variability or distinguishing between total amount
and timing of rain (Waldman et al. 2019b). While our ques-
tioning focuses on timing of rainfall alone due to its central
importance for yields in the sites, a point borne out by focus
groups and studies from the larger region (Osbahr et al. 2011;
Cooper et al. 2008), the tracking measures are less attentive
to and perhaps conflated with rainfall amount. Moreover,
responses could have been influenced by enumerators’ nor-
mative beliefs in terms of “correct” rainfall timing, but
enumerators were carefully trained to simply explain the
questions, present the tables representing annual patterns,
and record rainfall presence where respondents indicated.
Despite the complex questioning and potential for biases
associated with our tracking measure, we feel that appro-
priate steps were taken to minimize such biases, and the
potential for impacting our suggested findings is small,
particularly given the exploratory nature of this study.
Nevertheless, given the possibility of inaccurate recall, we
are cautious with asserting our findings.

In addition to yield and tracking, we draw additional varia-
bles from the household surveys with which to build statistical
models to control for variation in yield outcomes, including
household demographic, individual, and farm-level covariates.
We include respondent age, respondent level of education,
whether the household had lived in the site for more than
10 years, number of individuals in the household, farm size at
present (ha owned), whether the household fallowed any land
in the previous year, whether the household rented farmland
in the previous year, whether the household used fertilizer in
the previous year, whether the household used mulch or simi-
lar soil amendments in the previous year, whether the house-
hold owned cattle in the previous year, and whether the
household owned goats, sheep, or pigs in the previous year.
Model specification is described below, and descriptive means
of household variables are presented in Table S1 in the online
supplemental material.

c. Rainfall data

Diem et al. (2019a) found that two satellite-based products,
Climate Hazards Group InfraRed Precipitation with Stations
(CHIRPS) and Tropical Applications of Meteorology Using
Satellite and Ground-Based Observations (TAMSAT), have
minimal temporal biases and do not produce artificial drying
trends like those seen for other products (e.g., African Rainfall
Climatology, version 2). Without temporal adjustments, both
products have significant temporal correlations (i.e., annual
totals from 2000 to 2012) with ground-measured rainfall totals
in western Uganda (Diem et al. 2019a). Therefore, daily rain-
fall estimates for 1983–2019 from version 2 of CHIRPS (Funk
et al. 2015) and version 3 of TAMSAT (Maidment et al. 2017)
were used in this study. Those data were obtained from the
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International Research Institute for Climate and Society at
Columbia University. CHIRPS and TAMSAT have spatial
resolutions of 0.058 and 0.03758, respectively, and begin in
1981 and 1983, respectively. CHIRPS was serially complete,
while TAMSAT was missing 5% of daily rainfall totals. For
each of days with missing data, the mean value for the day
of year}over the 37 years}was used as the predicted rain-
fall total for the TAMSAT product. Monthly temperature
data from The Berkeley Earth Land/Ocean Temperature
Record (Rohde and Hausfather 2020) were also accessed to
assess alongside rainfall products and are presented as sim-
ple site-specific trends in the online supplemental material.

d. Derivation of climate tracking

The individual-level skill of farmer climate tracking was
represented by the point-biserial correlation coefficients
between a farmer’s perceived rainfall occurrence, a set of
binary variables, and satellite-estimated rainfall totals, a set of
continuous variables. Point-biserial correlations are appropri-
ate for use with binary and continuous data (Sheskin 2020).
Correlations were computed from vectors of 36 values, each
value specific to a dekadal, or 10-day period. Farmers identi-
fied these presence–absence rainfall values in each dekad rel-
ative to “in the last few years” and “10–20 years in the past”;
see above description under household data. The associated
dekadal rainfall total was the mean of the estimates from the
CHIRPS and TAMSAT gridded products corresponding to
the nearest pixels to each household; values for both Masindi
and Bwindi were derived from the nearest 15 CHIRPS cells
and 25 TAMSAT cells. Derivation resulted in a range of
correlation values (Fig. S3 in the online supplemental
material), including a small number of near-0 values, per-
haps indicating misunderstanding of questioning in isolated
cases.

As noted in the results and discussion sections (sections 3
and 4), we use a literal interpretation of previous rainfall peri-
ods from the survey questions against which to assign satel-
lite-based rainfall estimates and calculate recent and past
tracking correlations specific to each farmer (2014–18 and
1998–2008). We acknowledge that farmers may not interpret
their perceptions of previous periods as precisely aligned with
these recent and past periods. We therefore explore the
sensitivity of tracking derivations to the selection of recent
and past periods of satellite-based rainfall data by varying
the start and end years as follows in relation to the periods
stated in the survey: for recent tracking, 2014–18, 2015–18,
and 2016–18; for past tracking, 1983–2008, 1983–2013,
1988–2008, 1988–2013, 1993–2008, 1993–2013, 1998–2008,
1998–2013, 2003–08, and 2003–13. Boxplots of these differ-
ent tracking derivations show almost no sensitivity to the
varying periods of rainfall data used (Fig. S5 in the online
supplemental material). To further test sensitivity, we fit
models using each of these alternative tracking derivations.
Coefficient estimates of the tracking effects are nearly identi-
cal regardless of time period, with recent tracking as a credible
predictor of yield outcomes across all models (Fig. S4 in the
online supplemental material; models are detailed just below).

e. Statistical analysis

To assess the association between accuracy of climate
tracking and farm yield, we fit a Bayesian multilevel statistical
model to farmer-level survey data and farmer climate tracking
variables. The log-transformed outcome variable, crop yield,
approximates a normal distribution, informing the use of a
Gaussian model structure. We estimate the model using Ham-
iltonian Monte Carlo procedures in Stan, called through the
R Statistical Environment (v.4.1.0) (R Core Team 2020) via
{rstan} (v2.26.1) (Stan Development Team 2021) with the
map2stan() function of the {rethinking} package (McElreath
2015).

The Gaussian model is fitted to the 585 household observa-
tions where yield is observed. Data are structured as house-
holds in communities (i.e., villages), parishes, subcounties,
counties, and districts within each site (see sample description,
above); trading center is the relevant level of organization
above community within which farmers interact. Varying
intercept parameters are included for communities and trad-
ing centers. These varying effects capture unobserved varia-
tion in yield outcomes (i.e., spatial nonindependence or
clustering of the data) based on biophysical, agroecological,
institutional, or other place-based factors.

The formal model is specified as

yi ∼ Normal(mi,s), with

mi � a 1 ac i( ) 1 as i( ) 1 brecentri 1 bpastpi 1 bageai 1 bedei

1 bresidentni 1 bhouseholdhi 1 bfarmfi 1 bfallowdi

1 brentli 1 bfertki 1 bamendmi 1 bcattleci 1 bmedstockgi,

where farmer-level yield yi is defined by a Gaussian distribu-
tion with mean mi and standard deviation s; a is the grand
intercept, ac(i) is the varying intercept for each community,
and as(i) is the varying intercept for each subsite (trading cen-
ter); brecent is the effect of recent climate tracking ri; bpast is
the effect of past climate tracking pi; bage is the effect of age
ai; bed is the effect of the binary indicator for having com-
pleted secondary school or higher ei; bresident is the effect of
the binary indicator for living in the area for more than 10
years ni; bhousehold is the effect of household size hi; bfarm is
the effect of farm size fi; bfallow is the effect of the binary indi-
cator for fallowing farm land di; brent is the effect of the binary
indicator for renting farm land li; bfert is the effect of the
binary indicator for applying fertilizer ki; bamend is the effect
of the binary indicator for using soil amendments or mulch mi;
bcattle is the effect of the binary indicator for owning cattle ci;
and bmedstock is the effect of the binary indicator for owning
medium livestock gi.

Priors on all farmer-level fixed effects are Gaussian, with
mean of 0 and standard deviation of 1. Priors on all varying
intercept effects are Gaussian with mean of zero and variance
hyperparameters; priors on hyperparameters are half-Cauchy
with location of 0 and scale of 1. The model is coded and esti-
mated following published methods (McElreath 2015).

The following transformations are used for model variables:
log of yield (UGX per hectare), log of age (years), log of
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household size (number of people), and square root of farm
size (ha). All other variables are retained on their original
scale. Covariance of model variables is examined for multico-
linearity; values are presented in Table S2 in the online
supplemental material.

Model estimation is computed with a 10 000-iteration burn-
in and 10 000-iteration posterior sample on an Intel Xeon E5
3.6 (4.5) GHz 8-core processor, with 64 GB of memory, run-
ning macOS, version 10.15.6. Examination of traceplots and
kernel densities indicate adequate mixing. Additional model
diagnostics are performed by examining R-hat (i.e., potential
scale reduction statistic to evaluate convergence) and n_eff
(i.e., crude estimate of independent samples of parameters to
evaluate uncertainty) values, and by conducting posterior pre-
dictive checks (McElreath 2015). Together, these diagnostic
steps indicate appropriate model fit.

We evaluate our central hypothesis that skill in farmer-level
climate tracking is associated with higher yields by presenting
graphical and tabular summaries of posterior densities of house-
hold-level fixed effects estimates and varying intercept effects
estimates (Fig. 2; Table S3 in the online supplemental material).

3. Results

Raw data from farmer recalled observations align generally
with the timing and duration of seasonal rainfall patterns
indicated by satellite-based estimates, with farmers reporting

notable differences between past and present rainfall patterns
(Figs. 1b,c). In aggregate across the two sites, farmers are
more confident in the presence of distinct bimodal rainfall
patterns one or more decades in the past than in the recent
several years (Fig. 1b). While not evident in these coarse con-
trasts (Fig. 1c), trend analyses of satellite-based data corrobo-
rate this weakening of the bimodal regime, in particular
through increasing rainfall during the boreal summer dry sea-
sons (Fig. S1 in the online supplemental material; also Diem
et al. 2019b). Importantly, there is appreciable variation in
observations of rainfall patterns among farmers both within
and between sites, and so likewise in our climate tracking
measures, indicating a range of skill across farmers (Figs. S2
and S3 in the online supplemental material).

The statistical model shows that skillful climate tracking of
rainfall timing in recent years credibly predicts higher crop
yields in the present [Fig. 2; posterior mean, 0.48, 95% credi-
bility interval, (0.05, 0.91)]. The model estimates this effect in
the presence of farm-level covariates (e.g., land holdings, edu-
cation, on-farm practices) that we expect a priori to pattern
yields. The model also accounts for yield differences at com-
munity and subsite levels that control for varying agroecologi-
cal conditions and other place-based features like quality of
regional forecasts. Notably, only two community-level (and
no subsite-level) effects are credibly different from 0, meaning
much of the variation in yields is explained by farmer-level
factors. Results lend support to our hypothesis that farmers
who more skillfully observe and recall recent rainfall patterns
experience higher crop yields, which we infer from the con-
trolled model to potentially be mediated by on-farm adaptive
practices. More skillful tracking of past rainfall, on the scale of
one to two decades, is not credibly associated with higher or
lower crop yields [20.30 (20.84, 0.26)]. This latter result}that
perception of past climate patterns does little to inform higher
yields today}is congruent with historical knowledge systems
losing their predictive power in a region with changing rainfall
patterns and limited access to actionable scientific forecasting
(Osbahr et al. 2011; Roncoli et al. 2011; Okonya et al. 2013) or
may suggest the presence of biases in recall (Waldman et al.
2019b). We discuss these possibilities further below.

The association of more skillful recent climate tracking
with present yield is robust to various derivations of tracking
variables. Here in the main text, we report model results and
tracking measures determined by a literal interpretation of
recent and past periods from surveys: 2014–18 (recent as “the
last few years”) and 1998–2008 (past as “10 to 20 years or
more in the past”). We also conduct a sensitivity analysis by
varying the range of years selected from satellite-based data
used to calculate tracking correlations. The model-estimated
coefficients (and credibility) are consistent across this range
of tracking derivations (Fig. S4 in the online supplemental
material). We discuss the tracking derivation further below.

Observed farmer tracking and crop yield outcomes likely
occur against a backdrop of changing climate in the region.
Assessing these background conditions, we show that monthly
mean temperatures have increased over all months of the year
in both sites since 1983 (Fig. S1 in the online supplemental
material). Mean monthly rainfall has increased at one or both

FIG. 2. Coefficient estimates from the multilevel statistical model
predicting farm yield. Farmer-level posterior mean estimates (and
95% credibility intervals) include climate tracking effects corre-
sponding to recent (2014–18) and past periods (1998–2008) along
with control covariates. Varying intercept (i.e., random) effects at
the community (light-gray solid curves) and subsite (light-gray
dashed curves) levels are plotted as overlapping densities and rep-
resent place-specific adjustments (and uncertainty) to the grand
intercept, controlling for spatial nonindependence of reported
yields. All estimates are drawn from the joint-posterior density of
the Gaussian multilevel statistical model.
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sites during the first rains (March–mid-May), the intervening
boreal summer dry period (mid-May–July), and during the
early period of the second rains (August–November). Such
wetting trends are evident throughout western Uganda, likely
caused by increased atmospheric moisture and instability
(Diem et al. 2019b). Ongoing changes in temperature and rain-
fall highlight the importance of local knowledge in adapting to
variable and changing climate, particularly because scientific
forecasts can be unreliable and variably interpreted (Roncoli
et al. 2011; Okonya et al. 2013).

4. Discussion

Our results suggest the likelihood that some farmers can
skillfully observe and adapt to variable and changing climate.
These results have mixed implications. While intra-annual
variation in recent rainfall is pronounced, some farmers may
accurately observe this variation and update their expecta-
tions to inform selection of crops, timing of planting and har-
vest, and other on-farm strategies (Okonya et al. 2013;
Salerno et al. 2019; Guido et al. 2020), which we infer are
linked to the model-estimated increase in yields. Indeed,
farmer knowledge systems have evolved to be flexible and
inform critical decisions to support livelihood resilience
(Orlove et al. 2010; Crane et al. 2010). However, we observe a
range of tracking and yield values in our study region (Fig. S3
and Table S1 in the online supplemental material), suggesting
that many farmers may not have observed recent rainfall pat-
terns in ways that inform present on-farm decisions, or that
barriers to adaptive capacity exist to limit utility or salience of
this information (e.g., high cost of short-cycle seed, uncertain
efficacy of altered practices) (Hisali et al. 2011; Waldman et al.
2019a). Such limitations pose notable sustainability challenges
in a nation of 70% smallholder farmers, with an uncertain and
changing climate, and with projected total population growth
among the world’s highest (Salerno et al. 2017).

Our approach and findings represent a departure from
the majority of sustainability research assessing alignment
between smallholder climate observations and scientific cli-
mate measures (Savo et al. 2016; De Longueville et al. 2020),
both by reporting what can be interpreted as accurate recall
and by associating this recall with on-farm outcomes. In gen-
eral, published research compares largely qualitative meas-
ures of farmer observations with physical records and shows
inconsistent alignment of rainfall totals, timing, variability,
and trends (Roncoli 2006; Osbahr et al. 2011; Simelton et al.
2013; Mulenga et al. 2017; De Longueville et al. 2020), though
with notable exceptions (Chaudhary and Bawa 2011; Savo
et al. 2016; Salerno et al. 2019). Reasons for misalignment
focus on spatiotemporal mismatch between climate records
and farmer observations, perceptual or recall biases, and
smallholder knowledge systems integrating diverse information
sources (e.g., soil moisture, crop and range productivity, local
and nonlocal kin networks) that may influence rainfall or tem-
perature interpretation (Orlove et al. 2010; Osbahr et al. 2011;
Simelton et al. 2013; Waldman et al. 2019b).

In regions of limited scientific climate data, and where the
skill and salience of scientific forecasts is uncertain for many

farmers, local observations may augment patchy climate records
and support scientific seasonal forecast creation and uptake
(Chaudhary and Bawa 2011; Roncoli et al. 2011; Savo et al.
2016). We highlight the importance of examining smallholder
climate observations in the context of livelihood outcomes, in
our case yields, and focusing on farmer agency. Indeed, deci-
sions and their skill result from farmer experiences over time,
influenced by social and ecological processes, and translated
variably by individual farmers (Crane et al. 2011).

a. Limitations and future applications

Our analysis estimates a credible association between skill-
ful climate perceptions and yields. These findings rest on the
key assumption of intervening mechanisms of adaptation,
which are likely complex and variable (Roncoli 2006; Crane
et al. 2011; Okonya et al. 2013). However, we do not control
for all possible confounds, such as kin relationships or
embeddedness in knowledge networks, which could indeed
influence both tracking skill and yield outcomes. If such
unmeasured factors were the true adaptive pathway to
improved yields, our estimated effects of rainfall tracking on
yield could be spurious. Future work should interrogate the
stated assumption linking climate information to on-farm
actions to outcomes using robust data and causal models
(Ferraro et al. 2018). Despite this caveat, our findings are
consistent with previous reports of farmers integrating
meaningful observations into dynamic knowledge systems
that inform plot-specific on-farm strategies (Orlove et al.
2010). For instance, challenging decisions such as when and
what varieties to plant and harvest likely require pooling of
information from social and environmental signals (including
perceptions of rainfall timing), but optimal decisions can
indeed directly impact higher crop yields (Crane et al. 2011;
Akinnuoye-Adelabu and Modi 2017; Waldman et al. 2019b).

Our measure of farmer climate tracking is a correlation
coefficient between recalled rainfall observations and satel-
lite-based rainfall estimates, both of which are subject to
error. For example, recall error may exist because of cognitive
biases shaped by uncertainty and shared narratives about cli-
mate change, which can limit farmers’ identification of previ-
ous rainfall seasonality (Mulenga et al. 2017; Waldman et al.
2019b). However, our approach assumes a range of tracking
(recall) skill present in our sample, which is evident in the
data, and our goal is to assess whether relatively higher skill is
associated with higher yields, while limiting patterned bias
through a controlled model. Importantly, our analyses aim to
measure within-region variation in tracking skill, rather than
determine whether farmers in general are skilled or not.
Moreover, we implement steps to minimize measurement
error through grounding climate recall methods in locally spe-
cific seasonality, while narrowly focusing survey questions on
timing (not amount) of seasonal rainfall (Roncoli 2006).
Farmer responses are then associated with validated satellite-
based rainfall products (Diem et al. 2019a), which are appro-
priate for our aims due to the paucity of rain gauge data
(Kizza et al. 2009). Further details are provided in the meth-
ods section (section 2), but issues of bias, measurement,
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cognition, and skill should remain central to future research
on climate perceptions and decision-making.

Similarly, as noted in the results presented above, we use a
literal interpretation of previous rainfall periods from the sur-
vey questions against which to assign satellite-based rainfall
estimates and calculate recent and past tracking correlations
specific to each farmer (2014–18 and 1998–2008). In part
because of recall and cognitive biases just noted, farmers are
unlikely to average over the exact periods in question to
report rainfall patterns precisely aligned with corresponding
satellite-based rainfall years. We therefore conduct a sensitiv-
ity analysis by varying the periods of recent and past rainfall
estimates used in calculating tracking coefficients (Fig. S5 in
the online supplemental material). We fit 30 models with
identical structure to the model presented in the main text,
except with recent and past tracking variably defined. All
models estimate nearly identical tracking effects and credibil-
ity (Fig. S4 in the online supplemental material), suggesting
that the association between recent tracking and higher yields
is robust to the selection of rainfall periods.

b. Conclusions

Going beyond simply assessing agreement or accuracy of
smallholder observations and scientific measures, our findings
are unique in associating more skillful farmer-level tracking
of rainfall patterns with higher agricultural yields, which sug-
gests the likelihood of adaptive capacity in some households
and a degree of resilience to rainfall variability. These findings
are relevant to smallholder farming systems poised to experi-
ence profound impacts of demographic and climatic change
(Alexander et al. 2011). By interrogating the assumption that
better climate information supports smallholder adaptive
capacity, we articulate an urgent need and recommend that
improved climate science and seasonal forecasting directly
engage with local knowledge systems in the creation and dis-
semination of climate information (Crane et al. 2011; Simelton
et al. 2013; Savo et al. 2016). Such engagement should be better
integrated into relevant policy and adaptation fora at national
and international scales (Carr et al. 2020; World Meteorological
Organization 2011; Republic of Uganda 2020).
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